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The kinetic spinodal (KS) in supercooled liquids, similar to the KS in super-
heated and stretched liquids, has been introduced as a locus where the mean
time of formation of a critical nucleus becomes shorter than a relaxation time to
local equilibrium. If the surface tension of the solid–liquid interface is known,
the kinetic spinodal is completely determined by the equation of state of the
supercooled liquid. The theory was tested against experimental data for the
surface tension and the homogeneous nucleation limit for supercooled water.
Reasonably good agreement between theoretical predictions and experimental
data was observed. A prediction of the high-temperature limit for glass transi-
tions is also discussed.
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1. INTRODUCTION

In the usual thermodynamic theory of phase transitions, the spinodal, the
locus of states of infinite compressibility, is considered a boundary of the
metastable states in fluids [1]. However, physically the metastable state
becomes short-lived well before the spinodal is reached [2, 3]. According
to the classical theory of homogeneous nucleation, the lifetime of the
metastable state is determined by the mean time of formation of a critical
nucleus of the stable phase tM, which depends on both the thermodynamic
and the transport properties of the fluid (for a review, see Ref. 4). In this
theory, a metastable phase is considered a short-lived, but still thermody-
namic, state of a metastable fluid. In the fluctuation theory of relaxation of
metastable states developed by Patashinskii and Shumilo [5, 6], the physical



boundary of metastable states was introduced as a locus where the mean
time of formation of a critical nucleus of the stable phase, tM, becomes
shorter than a characteristic time governing the decay of fluctuations to
local equilibrium, tR. When tM [ tR, the entire concept of a homogeneous
state ceases to be valid, and as a result of fluctuations, the initial homoge-
neous state transforms to a heterogeneous state during the time t % tR [6].
Both times, tM and tR, depend on the kinetic properties of the liquid, but
the ratio tM/tR depends only on the thermodynamic properties. Therefore,
the physical boundary of the metastable state, or kinetic spinodal, is
completely determined by the equation of state and the surface tension.

In the present work, we continue the study of the kinetic boundary of
metastable states in fluids initiated in our previous studies of vapor–liquid
equilibrium [7, 8]. Here we extend this approach to solid–liquid equilib-
rium and consider the kinetic boundary of metastable states in supercooled
liquids. The theory was tested against experimental data for supercooled
water.

2. THEORETICAL BACKGROUND

The dynamics of a system in the metastable state of the initial phase is
connected with the relaxation and fluctuations of the hydrodynamic fields
of the order parameter j(xF, t), energy density e(xF, t), etc. [5, 6]. The
slowness of their relaxation allows us to exclude other degrees of freedom
that supposedly reach local equilibrium. In liquids, we may consider the
dynamics of a single hydrodynamic mode, which is a scalar field of the
order parameter only. In this case, the equation of motion of the system
is [9]
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where Cc is the transport coefficient, H is the effective Hamiltonion, and fst
is an external random force modeling the thermal fluctuations. The effec-
tive Hamiltonion H{j} can be expanded in a functional series as in a
second-order phase transition. In the vicinity of the stable region, the
effective Hamiltonion can be represented in the form [6]
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where g, u2, and u3 are positive constants, and u2 is assumed to be small.
The curve u2=0 represents a bare or ‘‘unrenormalized’’ spinodal (i.e.,
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a spinodal of the system in the absence of fluctuations). The solution of
Eqs. (1) and (2), which was obtained by Patashinskii and Shumilo [5, 6],
yields a lifetime of the metastable phase, which accounts for fluctuations
and is given by the following equation:

tM=tR 1
4pc
l0
2 exp(cWmin/kBT) (3)

where tR=16g/(C0u
2
2) is a characteristic time governing the relaxation

toward local equilibrium, Wmin is the nucleation barrier, which is equal to
the minimum reversible work required to form a critical size nucleus, the
dimensionless parameter c=(u2g)3/2/(kBTu23), and l0 5 8.25 is a dimen-
sionless constant. It follows from Eq. (3) that when cWmin ± kBT the lifetime
of the metastable phase is much longer than the relaxation time tR. For
c < kBT/Wmin, the initial homogeneous state that is stable with respect to
long-wavelength fluctuations transforms to a heterogeneous state as a
result of fluctuations during a time comparable with the time governing the
relaxation toward local equilibrium (tM 5 tR). The curve cWmin=kBT, or,
alternatively,

u2=(u2)KS=
1
g
5(kBTu3)2

Wmin

62/3 (4)

can be regarded as the physical (kinetic) spinodal, which limits the region in
the phase diagram [u2 > (u2)KS] of statistically well-defined and experimen-
tally attainable metastable states. For 0 < u2 < (u2)KS, the lifetime tM < tR
and the very concept of an equilibrium homogeneous state is no longer
applicable, and this spinodal region separates metastable and unstable
states in the phase diagram of one-component fluids.

To use the theoretical result contained in Eq. (4) for practical calcula-
tions of the kinetic boundary of metastable states, we need to know how
the parameters u2, u3, and g of the effective Hamiltonion in Eq. (2) are
related to the thermodynamic parameters of the real physical system. As
shown in our previous work [7, 8], the parameters u2 and u3 are directly
related to the first and second derivatives of the chemical potential, m, with
respect to the density
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and for the parameter g a good estimate is

g=kBT(r*)1/3 (6)
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where r* is a characteristic density in the system. In superheated and
stretched liquids we used the critical density rc [7, 8] as a characteristic
density in Eq. (6), while in supercooled liquids one can set r* equal to the
density of the liquid at the triple point, r*=rtr.

Finally, with the use of Eqs. (5) and (6), Eq. (4) for the kinetic spinodal
TKS in supercooled liquids can be written in the form

m̄r(TKS)=5
kBTm̄

2
rr(TKS)

4Wmin(TKS)
62/3 1 r

rtr
21/3 (7)

where the nucleation barrier for the spherical crystal nucleus in supercooled
liquids is given by [2, 3]

Wmin=
16p
3

T2m(P) s3SL(T) n2s (T)
Dh2 DT2

(8)

Here sSL is the surface tension at the liquid–crystal interface, ns is the molar
volume of the crystal, Dh is the molar enthalpy of fusion, Tm is the melting
temperature at a given pressure P, and DT=Tm −T is the degree of super-
cooling.

3. COMPARISON WITH EXPERIMENTAL DATA

To calculate the kinetic boundary of the metastable state with Eq. (7),
one needs to know the equation of state (EOS) (which can be extrapolated
into the metastable region) and the surface tension. For vapor–liquid equi-
librium the equation of state and the surface tension are usually well
known, and the kinetic spinodal in superheated and stretched liquids can
be predicted with a high accuracy [7, 8]. In supercooled liquids, the situa-
tion is more complicated. The equation of state obtained from the analysis
of the experimental data for a stable liquid, as a rule, cannot be extrapo-
lated into the supercooled region, and the solid–liquid surface tension is
usually unknown. Unlike the vapor–liquid surface tension, the solid–liquid
surface tension cannot be measured directly and it is usually determined
from the analysis of experimental data for the nucleation rate in the super-
cooled liquid [2]. It is clear that the numerical value of the surface tension
obtained by this method depends strongly on the theoretical model applied
for this analysis. This increases the uncertainties in the prediction of the
kinetic boundary of the metastable state in supercooled liquids.

For a comparison of the theory with experimental data, we consider
here the thermodynamic properties of supercooled water. For supercooled
water, most of the information about the surface tension was obtained at
atmospheric pressure; therefore, we first consider here the isothermal
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compressibility, KT, and homogeneous nucleation temperature, TH, data
obtained at P=0.1MPa by Speedy and Angell [10]. The surface tension
sSL was obtained from a solution of Eq. (7) for the kinetic spinodal where
we set TKS=TH, with TH=235.16K as obtained by Speedy and Angell
[10]. For the representation of the thermodynamic properties of water the
IAPWS-95 formulation [11] is recommended as the most accurate. As
pointed out in an IAPWS release [11], this formulation behaves reason-
ably when extrapolated into the metastable region and represents the
available experimental data of supercooled water to within the experimen-
tal uncertainty. However, it is not clear how this EOS represents the second
derivatives of the pressure with respect to density in supercooled water at
temperatures close to TS. Therefore, to avoid a misinterpretation of exper-
imental data, the density of the liquid and the second derivative m̄rr in Eq.
(7) were calculated with the IAPWS-95 formulation [11] at the melting
temperature Tm. Since at low pressures near the melting curve, r and m̄rr
are slowly varying quantities, we assume that this is a reasonable approx-
imation. We calculate the first derivative m̄r(T)=K −1

T /rRT with an
empirical expression for the isothermal compressibility,

KT=Ao(T/TS −1) − co (9)

where the parameters Ao=296.5×10 −6MPa, co=0.349, and TS=228K
were obtained by Speedy and Angell [10] from a fit of Eq. (9) to their
experimental data in supercooled water at P=1MPa. The melting tem-
perature Tm was calculated with the international equation developed by
Wagner et al. [12], while for the calculation of the ice density, rS, and heat
of fusion, Dh, we used the vapor pressure formulation for ice developed by
Wexler [13].

The result of our calculations in comparison with the values of surface
tension obtained by other authors is shown in Fig. 1. Our value of surface
tension lies between the values of sSL=0.0287 J ·m−2 and sSL=0.0240
J ·m−2 obtained at the same temperature by Butorin and Skripov [14] and
by Wood and Walton [15], respectively. The surface tensions reported in
Refs. 14 and 15 were obtained from an analysis of the nucleation rate data
and, as pointed out by Butorin and Skripov [14], the difference between
them is due to an additional temperature-dependent factor, (Tm/T)2,
introduced into the equation for the nucleation barrier, Eq. (8), by Wood
and Walton [15]. Our value of the surface tension, sSL=0.0258 J ·m−2,
was obtained from a different theoretical model. Therefore, the difference
of about ±8% obtained for sSL in our case can be considered as reasonably
small in view of the uncertainty of nucleation theory. Huang and Bartell
[16], for example, obtained the same difference using slightly different
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Fig. 1. The ice water surface tension as a function of temperature. The filled circles
with the dotted eye-guide lines represent the values calculated with Eq. (7) with TKS=TH
and m̄rr(Tm) obtained from the IAPWS-95 formulation [11] at different pressures along
the melting curve, the open circles correspond to the values calculated with Eq. (7) with
m̄rr=74.1, and the open diamonds correspond to the values calculated with Eq. (13)
with a=0.32. The filled symbols correspond to experimental data obtained by Butorin
and Skripov [14] (squares), by Wood and Walton [15] (up triangles), and by Huang
and Bartell [16] (down triangles). The solid line corresponds to the constant value
sSL=0.027 J ·m−2; the long- and short-dashed lines represent the values calculated with
Eq. (25) in Ref. 15 and with Eq. (3) in Ref. 16, respectively.

modifications of kinetic theory for the analysis of their nucleation rate
experimental data at T=200K. At lower temperatures this difference can
even increase. A power-law interpolation,

s(T)=s(T1)(T/T1)0.3 (10)

proposed by Huang and Bartell [16] is also shown in Fig. 1. At T=235K,
the power-law interpolation gives sSL=0.0228 J ·m−2, which is about 5%
lower than the value obtained by Wood and Walton [15]. While at low
temperatures, T < 200K, the values of surface tension calculated with this
interpolation lie about 20–40% higher than those obtained from the simple
linear interpolation,

s(T)=s(T1)+(ds/dT)T1 (T−T1) (11)
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using (ds/dT)t=−36.55°C=0.211×10 −2 J ·m−2, obtained by Wood and
Walton [15].

To estimate the values of the surface tension at other temperatures, we
applied the above procedure to isothermal compressibility and homoge-
neous nucleation data obtained by Kanno and Angell [17] at higher pres-
sures, up to 190 MPa. The filled circles in Fig. 1 show the values of the
surface tension obtained with this method. One can see that despite expec-
tation, the surface tension extracted from our theory in this case increases
with a decrease in temperature. Such behavior of the surface tension is
specific for the heterogeneous nucleation that can be observed in large
volumes [14], rather than for the homogeneous nucleation in small
droplets. In Fig. 2, we show the critical radius of the nucleus [2, 3]

rc=
2Tm(P) sSL(T) ns(T)

Dh DT
(12)

calculated with different models for the surface tension at the homogeneous
nucleation temperatures reported by Kanno and Angell [17]. At low tem-
peratures, T < 200K, the critical radius of the nucleus calculated with

Fig. 2. The critical radius of the nucleus in supercooled water as a function of tem-
perature. The legend is the same as for Fig. 1.
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Eqs. (10) and (11), rc 4 0.3 to 0.9 nm, becomes comparable with the char-
acteristic size of the network defects in liquid water [18]. In principle, in
this case the network defects can play the role of the nucleation centers and
can stimulate heterogeneous nucleation even in small droplets. Although
there are also some other indications that liquid water can exist down to
T=150K [19], we have no solid evidence that the data reported by
Kanno and Angell [17] correspond to heterogeneous nucleation. There-
fore, we assume here that this unusual temperature behavior of the surface
tension is a result of extrapolation of the quantity m̄rr obtained at the
melting temperature to the homogeneous nucleation temperature TH at
these pressures. To avoid this ‘‘illegal’’ extrapolation of the quantity m̄rr
into the metatstable region at high pressures, we, in the second step, used,
at all pressures, the value m̄rr=74.1 obtained at P=0.1MPa. The results
for the surface tension obtained with this constant value of the parameter
m̄rr are shown in Fig. 1 by open circles. In this case, over the entire tem-
perature range 180 K < T < Tm, the surface tension can be treated as a
temperature-independent constant, sSL=0.0270±0.0012 J ·m−2. This value
is about 20% larger than the values obtained from the power-law inter-
polation of Huang and Bartell [16] and about 20% smaller than values
calculated from Turbull’s expression [20]

sSL=a
Dh
n2/3s

(13)

with a=0.32, originally recommended for water by Turnbull [20].
In Fig. 3, we show the temperatures at the kinetic spinodal, TKS,

calculated from Eq. (7) with the surface tension sSL=0.0270 J ·m−2 and
with the surface tension calculated with Eq. (13). In both cases, TKS satisfies
the obvious condition TS < TKS [ TH, or, equivalently, (u2)S < (u2)KS < (u2)H.
Since the kinetic spinodal represents the boundary behind which no equi-
librium thermodynamic state can exist, here we consider the lowest tem-
peratures [i.e., TKS calculated with the surface tension as given by Eq. (13)]
as a physical boundary of metastable states in supercooled water. The
shaded area in Fig. 3 marks the ‘‘nonthermodynamic habitat’’ for liquid
water, i.e., the region where no thermodynamic state for liquid water is
possible. It is not because in this region the parameter m̄r < 0, which violates
the thermodynamic condition of mechanical stability. The first derivative m̄r,
or, equivalently, the parameter u2 in Eq. (2), can remain small but positive
in this region. It is a ‘‘nonthermodynamic habitat’’ because the lifetime of
the homogeneous state in this region is smaller than the time to establish
local equilibrium. Therefore, any equilibrium homogeneous state for liquid
water is not possible in this region.
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Fig. 3. The phase diagram of supercooled water. The solid line represents the melting
curve [12]; the open diamonds and circles with the eye-guide lines correspond to the
kinetic spinodal temperatures, TKS, calculated with Eq. (7) with different approximations
for the surface tension; and the symbols represent the homogeneous nucleation, TH (down
triangles), and spinodal, TS (up triangles), temperatures obtained by Angell et al. [10, 17].

4. DISCUSSION

In the present work, we have developed a general approach for pre-
dicting the physical boundary of metastable states—the kinetic spinodal in
supercooled liquids. This approach requires only the EOS and the solid–
liquid surface tension for accurate prediction of the kinetic spinodal in
supercooled liquids. The approach can be applied to any supercooled liquid
with the scalar order parameter, including liquid metals. Here we applied
this method for calculation of the surface tension and the kinetic spinodal
in supercooled water. Reasonably good agreement with experimental data
was achieved.

Although water is the most common and best-studied liquid, the
peculiar behavior of its physical properties in the supercooled regime is still
a puzzle for investigators [21], and water remains the most difficult fluid
for modeling. Only during the last 4 to 5 years have several models and
EOSs been developed to represent the anomalous behavior of liquid water
in the supercooled regime [22–29]. These models give different, and even
alternative, scenarios of the behavior of supercooled water, and at the
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Fig. 4. The isothermal compressibility of water at different pressures in normal and
supercooled states as a function of temperature. The symbols represent experimental
values obtained by Angell et al. [10, 17], the solid curves represent values calculated with
the IAPWS-95 formulation [11], and the dotted–dashed curves correspond to the values
calculated with the new analytic equation of state of Jeffery and Austin [29].

present time, it is not clear which of them is correct. Our approach can be
used as a test of the thermodynamic consistency of the developed models in
the supercooled region, as done in superheated and stretched water [30].

As an example, we applied this method to the new analytical (NA)
equation of state for supercooled water developed recently by Jeffery and
Austin [29]. This equation predicts the existence of the second critical
point (CP2) related to the low-density water (LDW)/high-density water
(HDW) phase equilibrium and qualitatively reproduces the anomalous
behavior of the isothermal compressibility in supercooled water. However,
the quantitative difference between the experimental and the calculated
values of the isothermal compressibility in supercooled water is significant
(see Fig. 4). Because of the positions of the CP2 (Tc2=228.3 K, Pc2=95.3
MPa, and rc2=1042 kg ·m−3), the maximum compressibility calculated
with the NA EOS corresponds to the isobar P=100 MPa, but not to
P=0.1 MPa, as observed in the experiment. As a consequence, the kinetic
spinodal calculated with this EOS lies above the homogeneous nucleation
temperatures, which is physically incorrect. The phase diagram and the
kinetic spinodal calculated with this equation are shown in Fig. 5. The
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Fig. 5. The phase diagram of supercooled water calculated with the new analytic equa-
tion of state of Jeffery and Austin [29]. The cross corresponds to the critical point of
LDW–HDW equilibrium (dashed curve); the dotted curves correspond to the LDW–HDW
spinodals. Otherwise the legend is the same as for Fig. 2.

principle differences between this diagram and the phase diagram in Fig. 3
are that Eq. (7) now has two roots, TKS1 and TKS2, and the ‘‘nonthermody-
namic habitat’’ for supercooled liquid water now has the shape of the belt.
The second critical point and the LDW–HDW coexistence curve lie inside
the nonthermodynamic habitat belt, and therefore, they have no physical
meaning. Nevertheless, in principle, the conception of the second, ‘‘virtual
critical point’’ can be useful if it yields a good representation of the ther-
modynamic properties of supercooled water outside the nonthermodyna-
mic habitat belt created by this virtual critical point itself.

A possible physical interpretation of the second kinetic spinodal tem-
perature TKS2 is that this temperature corresponds to the upper temperature
limit where the glass transition at a given pressure is possible. For example,
at P=0.1 MPa, the temperature TKS1 calculated with the NA EOS [29] is
about 16 K higher than the homogeneous nucleation temperature obtained
by Speedy and Angell [10]. After a shift of the second kinetic spinodal
temperature TKS2 at the same value, one obtains T

shift
KS2=167 K, which is a

reasonable estimate for the glass transition limit at this pressure. To give a
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more accurate prediction of the glass transition limit in supercooled liquids,
we need both a better EOS and additional theoretical study of this phe-
nomenon.
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